43 research outputs found

    Terahertz dynamic aperture imaging at stand-off distances using a Compressed Sensing protocol

    Full text link
    In this text, results of a 0.35 terahertz (THz) dynamic aperture imaging approach are presented. The experiments use an optical modulation approach and a single pixel detector at a stand-off imaging distance of approx 1 meter. The optical modulation creates dynamic apertures of 5cm diameter with approx 2000 individually controllable elements. An optical modulation approach is used here for the first time at a large far-field distance, for the investigation of various test targets in a field-of-view of 8 x 8 cm. The results highlight the versatility of this modulation technique and show that this imaging paradigm is applicable even at large far-field distances. It proves the feasibility of this imaging approach for potential applications like stand-off security imaging or far field THz microscopy.Comment: 9 pages, 13 figure

    Modular Mechatronics Infrastructure for Robotic Planetary Exploration Assets in a Field Operation Scenario

    Get PDF
    In 2021 the Modular Mechatronics Infrastructure (MMI) was introduced as a solution to reduce weight, costs, and development time in robotic lanetary missions. With standardized interfaces and multi-functional elements, this modular approach is planned to be used more often in sustainable exploration activities on the Moon and Mars. The German multi-robot research project “Autonomous Robotic Networks to Help Modern Societies (ARCHES)” has explored this concept with the use of various collaborative robotic assets which have their capabilities extended by the MMI. Different scientific payloads, engineering infrastructure modules, and specific purpose tools can be integrated to and manipulated by a robotic arm and a standardized electromechanical docking-interface. Throughout the MMI’s design and implementation phase the performed preliminary tests confirmed that the different systems of the robotic cooperative team such as the Docking Interface System (DIS), the Power Management System (PMS), and the Data Communication System (DCS) functioned successfully. During the summer of 2022 a Demonstration Mission on Mount Etna (Sicily, Italy) was carried out as part of the ARCHES Project. This field scenario allowed the validation of the robotics systems in an analogue harsh environment and the confirmation of enhanced operations with the application of this modular method. Among the numerous activities performed in this volcanic terrain there are the efficient assembling of the Low Frequency Array (LOFAR) network, the energy-saving and reduced complexity of a detached Laser Induced Breakdown Spectroscopy (LIBS) module, and the uninterrupted powered operation between modules when switching between different power sources. The field data collected during this analogue campaign provided important outcomes for the modular robotics application. Modular and autonomous robots certainly benefit from their versatility, reusability, less complex systems, reduced requirements for space qualification, and lower risks for the mission. These characteristics will ensure that long duration and complex robotic planetary endeavours are not as challenging as they used to be in the past

    Physical Characterization of Arbiter PUFs

    Get PDF
    As intended by its name, Physically Unclonable Functions (PUFs) are considered as an ultimate solution to deal with insecure stor- age, hardware counterfeiting, and many other security problems. How- ever, many different successful attacks have already revealed vulnera- bilities of certain digital intrinsic PUFs. Although settling-state-based PUFs, such as SRAM PUFs, can be physically cloned by semi-invasive and fully-invasive attacks, successful attacks on timing-based PUFs were so far limited to modeling attacks. Such modeling requires a large sub- set of challenge-response-pairs (CRP) to successfully model the targeted PUF. In order to provide a final security answer, this paper proves that all arbiter-based (i.e. controlled and XOR-enhanced) PUFs can be com- pletely and linearly characterized by means of photonic emission analy- sis. Our experimental setup is capable of measuring every PUF-internal delay with a resolution of 6 picoseconds. Due to this resolution we in- deed require only the theoretical minimum number of linear independent equations (i.e. physical measurements) to directly solve the underlying inhomogeneous linear system. Moreover, we neither require to know the actual PUF challenges nor the corresponding PUF responses for our physical delay extraction. On top of that devastating result, we are also able to further simplify our setup for easier physical measurement han- dling. We present our practical results for a real arbiter PUF implemen- tation on a Complex Programmable Logic Device (CPLD) from Altera manufactured in a 180 nanometer process

    Design and Implementation of a Modular Mechatronics Infrastructure for Robotic Planetary Exploration Assets

    Get PDF
    Traditionally, the robotic systems which aim to explore other celestial bodies include all instruments and tools necessary for the mission. This makes them unique developments. Usually, they are heavy, complex, costly and do not provide any interchangeable parts that could be replaced in the event of permanent failure. However, for future missions, agencies, institutes and commercial companies are developing robotics systems based on the concept of modular robotics. This new strategy becomes critical for planetary exploration because it is able to reduce load, costs and development time. In the German multi robot research project, ‘’Autonomous Robotic Networks to Help Modern Societies (ARCHES)”, led by the German Aerospace Center (DLR), this modern design methodology is followed. Cooperation among robots and modularity are the core of its structure. These characteristics are present in the collaboration between the rovers and the uncrewed aerial vehicle (UAV) during navigation tasks, or when the Lightweight Rover Unit (LRU) interacts with changeable manipulator tools and payload boxes through its robotic arm and its standardized electromechanical interface. Examples of these modules include scientific packages, power supply systems, communication and data acquisition architectures, soil sample storage units, and specific purpose end-effectors. The focus of this work is in the design and implementation of a mechatronics infrastructure (MI) which encompasses the docking interface, the payload modules, and the power and data management electronics board inside each box. These three elements are essential for the extension of the capabilities of the rover and the enhancement of the robotics systems according to the tasks to be performed. This will ensure that robots can cooperate with each other either in scientific missions or in the construction and maintenance of large structures. The MI’s hardware and software developed in this project will be tested and validated in the ARCHES demonstration mission on Mount Etna, Sicily, in Italy between 13th June and 9th July 2022. Finally, it is important to highlight that modularity and standardization were considered at all levels of the infrastructure. From the robotics systems to the internal architecture of each payload module, these concepts can provide versatility and reliability to the cooperative robotic network. This will improve the problem-solving capabilities of robots performing complex tasks in future planetary exploration missions

    Modular Mechatronics Infrastructure for Robotic Planetary Exploration Assets in a Field Operation Scenario

    Get PDF
    In 2021 the Modular Mechatronics Infrastructure (MMI) was introduced as a solution to reduce weight, costs, and development time in robotic planetary missions. With standardized interfaces and multi-functional elements, this modular approach is planned to be used more often in sustainable exploration activities on the Moon and Mars. The German multi-robot research project “Autonomous Robotic Networks to Help Modern Societies (ARCHES)” has explored this concept with the use of various collaborative robotic assets which have their capabilities extended by the MMI. Different scientific payloads, engineering infrastructure modules, and specific purpose tools can be integrated to and manipulated by a robotic arm and a standardized electromechanical docking-interface. Throughout the MMI’s design and implementation phase the performed preliminary tests confirmed that the different systems of the robotic cooperative team such as the Docking Interface System (DIS), the Power Management System (PMS), and the Data Communication System (DCS) functioned successfully. During the summer of 2022 a Demonstration Mission on Mount Etna (Sicily, Italy) was carried out as part of the ARCHES Project. This field scenario allowed the validation of the robotics systems in an analogue harsh environment and the confirmation of enhanced operations with the application of this modular method. Among the numerous activities performed in this volcanic terrain there are the efficient assembling of the Low Frequency Array (LOFAR) network, the energy-saving and reduced complexity of a detached Laser Induced Breakdown Spectroscopy (LIBS) module, and the uninterrupted powered operation between modules when switching between different power sources. The field data collected during this analogue campaign provided important outcomes for the modular robotics application. Modular and autonomous robots certainly benefit from their versatility, reusability, less complex systems, reduced requirements for space qualification, and lower risks for the mission. These characteristics will ensure that long duration and complex robotic planetary endeavours are not as challenging as they used to be in the past

    Mobile Manipulation of a Laser-induced Breakdown Spectrometer for Planetary Exploration

    Get PDF
    Laser-induced Breakdown Spectrometry (LIBS) is an established analytical technique to measure the elemental composition of rocks and other matter on the Martian surface. We propose an autonomous in-contact sampling method based on an attachable LIBS instrument, designed to measure the composition of samples on the surface of planets and moons. The spectrometer module is picked up by our Lightweight Rover Unit (LRU) at the landing site and transported to the sampling location, where the manipulator establishes a solid contact between the instrument and the sample. The rover commands the instrument to trigger the measurement, which in turn releases a laser-pulse and captures the spectrum of the resulting plasma. The in-contact deployment ensures a suitable focus distance for the spectrometer, without a focusing system that would add to the instrument's volume and weight, and allows for flexible deployment of the instrument. The autonomous software computes all necessary manipulation operations on-board the rover and requires almost no supervision from mission control. We tested the LRU and the LIBS instrument at the moon analogue test site on Mt. Etna, Sicily and successfully demonstrated multiple LIBS measurements, in which the rover automatically deployed the instrument on a rock sample, recorded a measurement and sent the data to mission control, with sufficient quality to distinguish the major elements of the recorded sample

    Preliminary Results for the Multi-Robot, Multi-Partner, Multi-Mission, Planetary Exploration Analogue Campaign on Mount Etna

    Get PDF
    This paper was initially intended to report on the outcome of the twice postponed demonstration mission of the ARCHES project. Due to the global COVID pandemic, it has been postponed from 2020, then 2021, to 2022. Nevertheless, the development of our concepts and integration has progressed rapidly, and some of the preliminary results are worthwhile to share with the community to drive the dialog on robotics planetary exploration strategies. This paper includes an overview of the planned 4-week campaign, as well as the vision and relevance of the missiontowards the planned official space missions. Furthermore, the cooperative aspect of the robotic teams, the scientific motivation, the sub task achievements are summarised

    Finally! Insights into the ARCHES Lunar Planetary Exploration Analogue Campaign on Etna in summer 2022

    Get PDF
    This paper summarises the first outcomes of the space demonstration mission of the ARCHES project which could have been performed this year from 13 june until 10 july on Italy’s Mt. Etna in Sicily. After the second postponement related to COVID from the initially for 2020 planed campaign, we are now very happy to report, that the whole campaign with more than 65 participants for four weeks has been successfully conduced. In this short overview paper, we will refer to all other publication here on IAC22. This paper includes an overview of the performed 4-week campaign and the achieved mission goals and first results but also share our findings on the organisational and planning aspects

    Terahertz dynamic aperture imaging at stand-off distances using a Compressed Sensing protocol

    No full text
    In this paper, results of a 0.35 THz dynamic aperture imaging approach are presented. The experiments use an optical modulation approach and a single pixel detector at a standoff imaging distance of 1 m. The optical modulation creates dynamic apertures of 5-cm diameter with 2000 individually controllable elements. An optical modulation approach is used here for the first time at a large far-field distance, for the investigation of various test targets in a field-of-view of 8 × 8 cm2. The results highlight the versatility of this modulation technique and show that this imaging paradigm is applicable even at large far-field distances. It proves the feasibility of this imaging approach for potential applications like standoff security imaging or far field THz microscopy
    corecore